

Space Science Enterprise

Strategic Planning 2003

Marc S. Allen

Director, Strategic and International Planning
Office of Space Science
July 2001

Strategic Planning Context

- GPRA requires Agency 5-year Plan, updated every 3 years
 - Flow-down/flow-up relationship with Enterprise plans
- Many purposes for the Space Science Enterprise Strategic Plan
 - Science Community--documents consensus on goals and priorities
 - NASA OSS--reference for programmatic decision-making
 - NASA Agency-level--for NASA strategic Plan (and GPRA)
 - OMB and Congress--tool for program and budget advocacy
 - The Public--handbook on what space science is going to do and why
- Enterprise Plan is founded on broad science community input
- 2000 Plan was evolved from the 1997 Plan
 - goal: scientific continuity, with incremental improvement but familiar "look and feel"

Space Science Enterprise Strategic Planning

Program Architecture Strategy

- 1. Firmly anchor flight program in strategic science goals and objectives
 - maintain a strong research base (SR&T)
- 2. Aggregate consecutive missions that address a cluster of science goals into "mission lines"
 - maintain and extend existing lines
 - start new lines by identifying compelling "pathfinder" mission concepts

Advantages of science-based mission lines:

- better political and public advocacy via an integrated scientific "package"
- improved continuity in budget and technology planning
- 3. Within a line, fly successive missions as science priorities dictate and available resources and technological capability permit

General SP 2003 Approach

- General approach similar to 1997, 2000 plans
- Renewed attempt to issue in September
 - more coordination with Agency plan development may be required
- New feature: solar system exploration and Sun-Earth connection surveys by NRC
 - similar to astronomy "decadal surveys": will emphasize community outreach and prioritization
 - focus on science objectives, missions also to be addressed
- Divide roadmapping into two phases
 - phase 1: collection of mission candidates and characterization;
 technical and cost estimation
 - phase 2: taking into account NRC science survey results, formulate theme mission queue recommendations

General SP 2003 Approach

- General approach similar to 1997, 2000 plans
- Renewed attempt again to issue in September
 - more coordination with Agency plan development may be required
- New this time for astronomy and astrophysics:
 - McKee-Taylor survey report available at the <u>beginning</u> of the process
 - Turner Committee on Physics of the Universe underway; will focus on science objectives, but missions may also be addressed
- Divide roadmapping activities into two phases
 - phase 1: collection of mission candidates and characterization;
 technical and cost estimation
 - phase 2: taking into account new NRC results, formulate theme mission queue recommendations

Provisional 2003 Strategic Planning Process

Space Science 2003 Strategic Plan Provisional Schedule

•	Initiate NRC science surveys	Jan 01
•	Initiate roadmap phase 1 activities	Jul 01
•	NRC science survey results available	Apr/May 02
•	Initiate roadmap phase 2 activities	May 02
•	Roadmapping results due to HQ	Sep 02
•	Consensus workshop	Nov 02
•	First plan draft circulated for review (SSB, SScAC)	Feb 03
•	SSB comments on draft due	May 03
•	Final SScAC review	Jul 03
•	Plan goes into production	Aug 03
•	Plan released	Sep 03

01jul09

NRC Study: "A New Strategy for Solar System Exploration"

A community assessment of the scientific priorities of the U.S. planetary science research programs; will define

- a "big picture" of solar system exploration--what it is, how it fits into other scientific endeavors, and why it is a compelling goal today
- a broad survey of the current state of knowledge about our solar system
- the top-level scientific questions that should provide the focus for solar system exploration today; these will be key scientific inputs to roadmapping activity
- a prioritized list of the most promising avenues for flight investigations and supporting ground-based activities
- Study will be conducted by four panels (Inner Planets, Giant Planets,
 Large Satellites, and Primitive Bodies) and a steering group

NRC Study: Solar and Space Physics--A Community Assessment and Strategy for the Future

An assessment of science status and strategic directions in solar physics, space physics, and Sun-Earth connections; will

- survey current state of knowledge
- identify future scientific priorities
- recommend most promising flight investigations and supporting ground research
- Time scale to be approximately ten years
- Emphasis on broad outreach to the scientific community
- Focus on science goals, some input on specific flight activities
- Study will be conducted by steering group plus five panels:
 - magnetosphere-ionosphere-atmosphere interactions
 - solar-wind magnetosphere interactions
 - solar and heliospheric physics
 - theory, computation, and data exploration
 - education and society

NRC Committee on the Physics of the Universe

Assessment of science at the intersection of physics and astronomy will:

- Focus on opportunities for breakthroughs in understanding the birth, evolution and destiny of the Universe, the laws that govern it, and even the nature of space and time
- Encompass astrophysical and cosmological phenomena that give insight into fundamental physics that is relevant to understanding the universe and the diversity objects within it.
- Address opportunities to explore new science through:
 - new techniques for observing phenomena in extreme environments and new regimes
 - new applications of fundamental physics to modeling and simulating the origin, evolution, and fate of the universe
 - understanding fundamental physics by using space and the cosmos as a laboratory full of experiments that could never be implemented on the Earth